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Abstract—The use of wireless sensor networks is rapidly
increasing. Also the demand of ubiquitous location sensors is
swiftly expanding. Hence, energy and location-awareness come
into focus of research today. A prospective approach for low-
power locating sensor networks is received signal strength in-
dicator (RSSI)-based direction finding. The presented approach
is based on RSSI difference measurements retrieved by a array
of directed antennas. In this paper, fundamental limits of RSSI-
based direction finding are evaluated, beyond the Cramér-Rao
Lower Bound (CRLB). That is not applicable for the design
of a localization system topology due to the nature of the
gain difference function that leads to an unbounded variance
of the unbiased estimator. Thus, a maximum likelihood (ML)
approach to the RSSI-based direction finding is presented. The
ML estimator yields a limited variance for all signal directions.
However, that benefit comes at the expense of being biased.
Beyond treating direction estimates, mean square position errors
are compared for both, the unbiased and the ML estimator.

I. INTRODUCTION

In the past years, locating wireless sensor networks (WSNs)
have become popular in many fields of life. Location-
awareness is an essential feature of todays sensor networks
[1]. One of those emerging applications of WSNs is wildlife
monitoring. Recent advances of WSNs enable biologists to
apply sensor networks to research questions on habitat use
[2] and foraging strategies [3] including observation of social
interactions in groups of animals and the study of behavioral
structures of individual animals [4].

The BATS1 system [5] is an energy-efficient sensor network
tracking bats in the wild. In the WSN position information
is obtained from received signal strength indicator (RSSI)
measurements [6] gathered within the sensor network. RSSI-
based localization is a good choice for a low-power locating
systems since the complexity of signal processing within
the WSN is comparably low [7]. Furthermore, RSSI-based
techniques do not require exhaustive synchronization of the
sensor nodes.

In general localization is a problem of parameter estimation.
Hence, fundamental limits from estimation theory, such as
the Cramér-Rao Lower Bound (CRLB), may be applied to
the problem of direction-of-arrival (DOA) estimation. In [8] a
CRLB for RSSI-based DOA for switched antenna beams has
been presented. This concept has been extended to arrays of

1Dynamic Adaptable Applications for Bats Tracking by Embedded Com-
municating Systems, http://www.for-bats.org/

directed antennas in [9]. Furthermore, in [9] the CRLB for
RSSI-based DOA is evaluated in the position domain and the
impact of network topology is considered. Since the CRLB
for the direction estimation is not bounded for all received
signal directions, it is reasonable that an unbiased estimator,
as considered by the CRLB, may not exist for RSSI-based
direction finding. Moreover, a biased estimator, most promi-
nent being the maximum likelihood (ML) estimator, allows to
trade-off bias for variance [10]. Therefore, in this paper the
ML estimator for RSSI-based DOA estimation is derived and
is assessed applying the CRLB for biased estimators [11].

The paper is organized as follows. Section II gives an
introduction to the system model, CRLB and ML estimation
in general. A brief review of RSSI-based DOA is given in
Section III. In Section IV ML estimation and biased CRLB
are illustrated with a simple representative sine function.
A comparison of position estimation errors for both DOA
estimators, the unbiased one and the ML estimator, is given
in Section V evaluating the mean squared error (MSE) in the
position domain. Section VI concludes this paper.

II. PRELIMINARIES

In this introductory section the system model is presented
and fundamentals of parameter estimation are covered which
includes CRLB for single parameter estimation in white Gaus-
sian noise (WGN) and ML estimation.

A. System Model

A hidden parameter is observed by measurements. Obser-
vations are considered to be given by

r = f(θ) + w, (1)

where f is an arbitrary function, θ is the desired parameter
and w is a WGN process with N (0, σ2

r).

B. Cramér-Rao Lower Bound

Due to the stochastic nature of measurements every param-
eter estimation exhibits some sort of variance. The variance
represents the uncertainty of a measurement. A process es-
timating a parameter from a measurement, i.e. an estimator,
should have two basic properties: unbiasedness and minimum
variance. Such estimators are called minimum variance unbi-
ased estimators (MVUE). For these unbiased estimators the
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Fig. 1: The radiation patterns and gain functions for both antenna configurations, rotated by 0° and 90° are depicted in blue
and red, respectively. The black line denotes the gain difference function.

Cramer-Rao Lower Bound (CRLB) provides a lower bound
on the error variance of the estimated state [12].

Recalling the alternative form of the CRLB [13]

var
(
θ̂
)
≥ E

[(
∂ ln p(r|θ))

∂θ

)2
]−1

(2)

and assuming that an unknown parameter θ of a deterministic
signal is observed in white Gaussian noise by a series of
measurements, described by

r[n] = f [n; θ] + w[n] n = 0, 1, . . . , N − 1 (3)

Following [13] using the assumptions stated above the general
CRLB for estimating an unknown parameter of a signal in
white Gaussian noise can be expressed as

var
(
θ̂
)
≥ σ2

r∑N−1
n=0

(
∂f [n;θ]
∂θ

)2 (4)

Equation (4) simplifies to

var
(
θ̂
)
≥ σ2

r(
∂f(θ)
∂θ

)2 (5)

for a single observation in presence of a WGN.

C. Maximum Likelihood Estimation

In this section one of the most prominent estimators, the
ML estimator, is covered. The ML estimator θ̂ML maximizes
the likelihood function [11]

θ̂ML = argmax
θ

p(r|θ). (6)

In this case it is assumed that θ̂ is estimated for a particular
realization of a random variable θ. Taking the logarithm yields
to

0 =
∂

∂θ
ln (p(r|θ))

∣∣∣∣
θ=θ̂ML

. (7)

Assuming WGN in equation (1) the expression further sim-
plifies to

0 = (r − f(θ))
∂

∂θ
f(θ)

∣∣∣∣
θ=θ̂ML

. (8)

Obviously, the inverse function f−1 maximizes the likelihood
function. Hence, the ML estimator is given by:

θ̂ML(r) = f−1(r) (9)

III. RSSI-BASED DIRECTION FINDING

The direction-of-arrival (DOA) is inferred from the RSSI
difference of a signal received at multiple directed antennas.
The field strength of the received signal is expressed by

Sa(θ) = Ga(θ) + PRX,a + wa (10)

where PRX is the signal power at the node without antenna
gain, Gk(θ) the gain of the respective antenna a, and wa an
additive white noise process. The difference in signal strength
becomes

∆S(θ) = S1(θ)− S2(θ) + w1 − w2. (11)

and further assuming a single signal source and the noise
processes wi to be uncorrelated the expression simplifies to

∆S(θ) = ∆G(θ) + w, (12)

with ∆G(θ) = G1(θ) − G2(θ) being the gain difference
function for the two considered antennas, and w a Gaussian
noise process. Following [9] and [14] the gain function for the
considered arrangement of two half-wave dipoles at distance
of ∼ λ/2 is given by

G(θ) ∝ [cos(2πd cos(θ))]
2 , (13)

and apparently depends on the rotation angle θ only. Restrict-
ing the setup to two antennas with the same gain patterns and
rotated by 90° towards each other, the gain difference function
becomes

∆G(θ) = G(θ)−G(θ + π/2). (14)
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Fig. 2: Densities: Marginal likelihood (a) and a-posteriori density (b, c).

Considered antenna patterns are depicted in Figure 1a. For
the considered antennas at rotation angles of 0° and 90°,
respectively, the gain functions and gain difference function
are shown in in Figure 1b. The DOA of a received signal is
inferred from the gain difference function as described in the
next section.

IV. DOA ESTIMATION

For the sake of simplicity in this section a simple represen-
tative measurement model

r = sin(θ) + w, (15)

where θ is the desired parameter and w is a WGN process with
N (0, σ2

r), is considered. The considered sine function features
the same essential properties as the gain difference function
of the antenna described above in equation (14). For the given
problem the likelihood function states as

P (r|θ0) =
1√

2πσ2
r

exp

[
−1

2

(
r − sin(θ0)

σr

)2
]

. (16)

The CRLB for the sine problem is fairly simple. Applying
equation (5) leads to

var
(
θ̂
)
≥ σ2

r

(cos(θ))
2 (17)

and figures out to have an unbounded variance for θ0 ap-
proaching −π/2 or π/2 as shown as dashed line in Figure 3.
In terms of the CRLB it makes sense that the variance is
unbounded as there is no curvature [13] at that positions and
pointing out that CRLB is a local measure.

However, practically one would expect the error of an
estimator for θ to be bounded in any case. And indeed, the
CRLB just states that an unbiased estimator has an infinite
variance. Actually, a biased estimator might exist with lim-
ited variance for the given problem. Moreover, the CRLB
approaching infinity allows to infer that an unbiased estimator
for the problem does not exist for θ0 approaching −π/2 or π/2.

It is reasonable to derive a more appropriate bound for the
estimation error. A nearby approach is calculating the full a-
posteriori probability density P (θ0|r). Applying the Bayes’
theorem the full a-posteriori density is obtained from

P (θ0|r) =
P (r|θ0)P (θ0)

P (r)
(18)

Without loss of generality P (θ0) may be limited to θ0 ∈
[−π/2,−π/2]. Assuming now a-priori knowledge on the dis-
tribution, the a-priori density is given by

P (θ0) = U(−π/2,−π/2). (19)

With the given non-informative a-priori density, the marginal
likelihood P (r) is obtained from

P (r) =

∫
θ

P (r|θ)P (θ) ∂θ (20)

and depicted in Figure 2a. The full a-posteriori density as a
function of r and θ is shown in Figure 2b and some prob-
ability density functions (PDFs) for selected measurements
r ∈ [0.2, 0.8, 1.0, 1.2], denoted by dashed lines in Figure 2b,
are sketched in Figure 2c.

Considering the ML estimator introduced in (9), the inverse
function of the stated problem is

θ̂ = arcsin(r), (21)

which also evidently is the ML estimator for the given observa-
tion. However, some points have to be noted about the function
f = sin(θ). Due to the nature of the sine function r is limited
to r ∈ [−1, 1], which is also true for the inverse function
sin−1(r). For the ability to transform arbitrary measurements
r ∈ [−∞,∞] into the parameter space, the definition of the
arcsin function is expanded to

arcsin(r) =


π/2 for r > 1
−π/2 for r < −1

sin−1(r) else
. (22)

Given the a-posteriori density the error of the ML estimator
is defined by

mse(θ̂) =

∫ π/2

−π/2

P (θ0|r) (θ0 − arcsin(r))
2
∂θ0. (23)

The results are shown in Figure 3. As expected, the variance
of the ML estimator is limited for all θ. Nevertheless, it has
to be noted, that this estimator is biased. Hence, the standard
CRLB may not be applied.

The obtained estimator can be evaluated applying the CRLB
for a biased estimator with known bias [11]. Consider a biased
estimator θ̂ with its bias b(θ) known for all θ

b(θ) = E{θ̂} − θ (24)
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Defining

ψ(θ) = b(θ) + θ (25)

any unbiased estimator with expectation ψ(θ) fulfills:

var
(
θ̂
)
≥ I(θ)

−1

(
∂ψ(θ)

∂θ

)2

. (26)

Applying (25) the lower limits for the variance of the biased
estimator is expressed by

var
(
θ̂
)
≥ I(θ)

−1

(
1 +

∂b(θ)

∂θ

)2

. (27)

For the sine problem, denoted by (16), the CRLB is computed
by

var
(
θ̂
)
≥ σ2

r

(cos(θ))
2

(
1 +

∂b(θ)

∂θ

)2

. (28)

Obviously, the CRLB in case of the biased estimator is limited
for all θ. Apparently looking at equation (27), the derivative
of the bias term b(θ) allows to compensate the zero for θ0

approaching −π/2 or π/2 in the denominator of the CRLB.
Thus, bias can be traded off for variance and vice versa. The
ML estimator approaches the CRLB for a biased estimator
with exactly the bias of the ML estimator.

V. POSITION ESTIMATION

In the last section MSEs of the minimum variance unbiased
estimator (MVUE) and the ML estimator have been derived.
Now, position errors resulting from these DOA estimators are
evaluated. The position error of multiple receivers in a sensor
network is considered for noisy DOA estimates. Especially,
the impact of the network topology is studied for both, the
MVUE and the ML estimator.

A. Mean Square Positioning Error

Considering the position estimation errors, the MSE in the
position domain denotes a bound on the minimum MSE of
the position estimator [13]. The MSE for a position estimate
is given by

mse(x̂) = E
[
(x̂− x) (x̂− x)

T
]

. (29)

Incorporating arbitrary non-zero mean measurement noise,
the measured angles θ can be expressed as

θ = g(x) + n (30)

in dependence of the user position x with

gk(x) = tan−1 ∆yk
∆xk

, (31)

and

∆xk = x− xk and ∆yk = y − yk. (32)

Given by the error propagation law, the covariance matrix is
expressed by [15][

H(x)−1
]
i,j

=

[
∂g(x)

∂xi

]T
1

mseθ(x)
I

[
∂g(x)

∂xj

]
, (33)

which for the presented case leads to

H(x)−1 =
∑
k

 ∆y2k
mseθ(x)‖x−xk‖42

− ∆xk·∆yk
mseθ(x)‖x−xk‖42

− ∆xk·∆yk
mseθ(x)‖x−xk‖42

∆x2
k

mseθ(x)‖x−xk‖42


for position estimation from RSSI-based DOA measurements,
with ||x||2 denoting the euclidean norm. Finally, the position
estimation error is retrieved with

msex(x) =
∑

tr (H(x)) (34)

for DOA-based localization in a WSNs. At this point it has
to noted again, that the DOA estimation error mseθ inherently
depends on the received signal direction θ, thus it depends on
the user position x.

B. Comparison of Position Estimation Errors

The derivation of mean square position errors is now utilized
to compare the performance of the MVUE with the perfor-
mance of the ML-based estimator, which is known to be a
biased estimator. The DOA estimation error mseθ is computed
according to (17) for the MVUE and for the ML approach
according to equation (23). Mean square position errors are
evaluated for two different WSN topologies. For the first
network the measurement function is given by f1 = cos(2θ),
which is just a scaled and shifted version of the measurement
function studied in the section above. The measurement func-
tion of the second network is defined by f2 = sin(2θ), which
apparently is the same measurement function as above, except
of being shifted by π/4. This can be interpreted as nodes with
the antenna patterns but the receivers being rotated by 0° and
45° for the examined network topologies 1 and 2, respectively.
For both the sensor nodes have been arranged in rectangular
shape with a node distance of 50 m.
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Fig. 4: Position errors for both estimators, MVUE and ML estimator for two different measurement functions.

In [9] it has been stated, that the network topology, i.e,
orientation of sensor nodes, is a crucial parameter for the lo-
calization performance. Indeed, this is correct for the MVUE.
But for the ML estimator results considerably differ from
those of the unbiased estimator. Comparing Figure 4c and
Figure 4d the effect of different network topologies is negli-
gible, whereas changing topology for the MVUE substantially
affects the mean square position error as seen in Figure 4a and
Figure 4b. Therefore, network topology is not that crucial for
the ML estimator as the mean square position error is quite
homogeneous and hardly depends on node orientation. This
fact is not really surprising as the MSE for DOA estimates,

comparing Figure 3 is fairly constant over all signal directions.

From Figure 4 it can be easily seen that the CRLB is a
rather pessimistic measure evaluating the MSE of position
estimates. These results show the importance of selecting the
right criteria to assess the performance of a localization system
and to draw the right conclusion for design of a localization
system. Furthermore, unbiasedness comes at the cost of an
increasing variance leading to larger MSE values for the
position estimates in the end. Figure 5 depicts the position
error percentiles. For network 1 the MVUE at least shows
a better performance at smaller MSEs. However, this swiftly
change at increasing MSEs. In case of network 2 there is no
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Fig. 5: Position errors (percentiles)

benefit for unbiasedness at all.
These results hold true for a snapshot position estimate, i.e.

based on a set single DOA observations. When processing a
series of DOA measurements, e.g. recursive Bayesian filtering,
unbiasedness might be the more important property of an
estimator, though. Bayesian filters are able to average out a
larger variance of a DOA estimator when the motion of tracked
target can be modeled appropriately. Therefore, in Bayesian
filtering, variance is not that harmful. However, a unknown
bias of a sensor is critical, even when considering perfect
motion models.

VI. CONCLUSION

In this paper the fundamentals of RSSI-based DOA have
been presented. For both, the MVUE and the ML estimator,
DOA estimation errors have been computed. The derived
CRLB for unbiased DOA estimation highly depends on di-
rection of the received signals and is unbounded for some
signal directions. In contrast to that, the ML estimation error is
limited for all signal directions and features a rather constant
MSE. But on the other, the ML estimator is biased. Mean
square position errors have been derived for a sensor network
with erroneous DOA estimators. It has been shown that
network topology matters in the MVUE case, but is negli-
gible when applying the ML approach to DOA estimation.
Furthermore, the ML estimator shows smaller MSE compared
to the MVUE considering snapshot localization. However, in
recursive Bayesian filtering, unbiasedness might be the major
objective. In that case, the MVUE would be first choice then.
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